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Solution of Kramers’ problem for a moderately to heavily damped elastic string
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We obtain the nucleation rate of critical droplets for an elastic string moving in a double-well potential and
subject to noise and damping forces. We obtain this rate for a class of potentials that includes both the
asymmetricf4 and thef6 potentials. The frequencies of small oscillations about the critical droplet are
obtained from a Heun equation. We solve the Fokker-Planck equation for the phase-space probability density
by projecting onto the eigenfunction basis. We present a comparison with simulations for the case of the
asymmetricf4 potential.
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The calculation of the thermal decay rate for a system
metastable state, separated by high-energy barriers
neighboring lower-energy stable states, has a long history@1#
but remains active today@2#. The decay process is describe
by the nucleation of droplets of the stable phase appearin
the surrounding background of the metastable phase.
celebrated early paper@3#, Kramers calculated this rate for
system described by a single~reaction! coordinate; this quan
tity was needed to understand thermal dissociation rate
molecules. The same problem, generalized to high
dimensional phase spaces, has subsequently arisen in
different fields, including condensation of liquid from supe
saturated vapor@4#, cosmological phase transitions@5#, and
protein folding@6#. Langer gave a general formulation of th
theory @7# and major reviews@8,9# were written to com-
memorate the 50th anniversary of Kramers’ paper.

A specific application and line of development of nuc
ation theory has been to the motion of dislocations in cr
tals. This work was initiated by Seeger and collaborators@10#
and by Hirth and Lothe@11# with important contributions
from others, e.g.,@12–14#. The dislocation is modeled as
one-dimensional continuum elastic string, which is und
tension, moving in an asymmetric local potential, and sub
to damping and noise forces arising from contact with a h
bath. The dislocation moves through the crystal by nuc
ation of bound soliton-antisoliton pairs in its displaceme
field u(x,t).

In the present paper, we give a nearly exact calculation
this soliton-antisoliton nucleation rate, for moderate to la
damping, and for aclass of local potentials that include
those most used in theories of first-order phase transiti
We do this by relating the problem to a solution of a He
equation@15–18#, and by using the eigenvalues and eige
functions from the Heun equation to solve the appropri
Fokker-Planck equation~FPE!.

Our equation of motion for the transverse displacem
u(x,t) of a one-dimensional string is the stochastic par
differential equation~PDE! ~subscripts denote partial deriva
tives, primes denote differentiation with respect to the ar
ment, all quantities are dimensionless@19#!,

utt2c0
2uxx1V18~u!52gut1z~x,t !. ~1!
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The damping and noise forces are from a heat bath at t
peratureT. c0 is a characteristic velocity,g.0 is a damping
constant, andz(x,t) is a random force density with zero
mean, Gaussian distribution, andd-function correlations in
both space and time proportional toTg. @We also use the
deterministic equation of motion~DEOM!, which is Eq.~1!
with zero on the right.# We give the rate calculation for a
class of local potentials indexed by a parameterK.0,

V1~u!5
1

2
au22

1

3
uK121

1

4
u2K12. ~2!

This class includes both the asymmetricf4 (K51) andf6

(K52) potentials; both of these have been extensively us
e.g., in Landau-Ginzburg theories, to describe first-or
phase transitions. The ‘‘shape parameter’’a lies in the inter-
val 0,a,2/9 for all K. For these values ofa, V1(u) has a
metastable minimum atu50 separated by a local maximum
from a stable minimum at a valueumin.0. At a5 2

9 , all the
minima ofV1(u) are degenerate. Previous calculations of
nucleation rate have only been forK51 and have been fur
ther restricted either to small asymmetry (a' 2

9 ) and/or to
large damping (g→`). Our method is not subject to thes
restrictions.

The critical droplet extremizes the static energy and so
a solution of the equation

d

du~x!
E

2`

`

dxF1

2
c0

2ux
21V1~u!G52c0

2uxx1V18~u!50,

~3!

which is the static limit of the DEOM. In addition, the criti
cal droplet satisfies boundary conditions of being nearly
erywhere equal to the uniform metastable solution,u(x)
[0, but with a single localized fluctuation over the max
mum and into the stable well ofV1(u). The solution is

ub~x!5HAa

2
@ tanh~X1!2tanh~X2!#J 1/K

, ~4!

whereX65Aa(x6x0)/(2c0). This ‘‘bounce’’ @20# solution
is a soliton and an antisoliton separated by 2x0(a)
5c0 /(Aa)ln$@(A2/3)1Aa#/@(A2/3)2Aa#%, which ap-
©2001 The American Physical Society06-1
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proaches infinity asa→2/9. The energy of the bounceEb is
obtained by using Eq.~4! to evaluate the energy integral i
Eq. ~3! @21#. There is a family of degenerate solutions of E
~3! obtained by translating Eq.~4!.

We demonstrate thatub(x) is a saddle point on the energ
surface over the phase space of solutions of the DEOM
then calculate the nucleation rate from the spectrum of sm
oscillations about it. To investigate the stability of th
bounce, we substituteu(x,t)5ub(x)1f(x)eivt into the
DEOM and linearize with respect tof. We obtain a Schro¨-
dinger equation,

f91@4l~a!2v~y!#f50, ~5!

wherey5@KAa/(2c0)#x, the eigenvalue in terms of the fre
quency is 4l(a)54(v2/a21)/K2,

v~y!52
2~K11!~K12!~n11!sech2 y

K2~n2tanh2 y!

1
4~K11!~2K11!n sech4 y

K2~n2tanh2 y!2
, ~6!

and n(a)5@11A129a/2#/@12A129a/2#. Depending on
a, the ‘‘potential energy’’ in Eq.~6! has one or two attractive
wells and is asymptotic to zero at largeuyu, so the spectrum
has discrete bound states with negative eigenvaluesl(a) @or
v2,a# and a continuum of positive eigenvalues@or v2.a#.
Since the DEOM is a nonlinear Klein-Gordon equation, t
derivative of the bounce is a solution of Eq.~5! with
v2(a)50 @or l(a)521# ~the ‘‘translation mode’’! @22#.
The bounce has even parity, its derivative has odd parity,
consequently the translation mode is not the ground stat
Eq. ~5!. There must be a solution withv2(a),0, which
implies that the bounce is unstable@23#.

To solve Eq.~5! we change the independent variable
z5tanh2(y) (0,z,1 for 2`,y,`) and obtain a Heun
ODE with regular singular points at 0, 1,̀, andn(a). For
0,a,2/9, `.n(a).1, son(a) is outside the physical do
main of z. We change the dependent variable toA(z)5zj(z
21)m(z2n)kf(z) and then find that to put the resultin
equation into ‘‘normal form’’ for the Heun equation@17,18#
we must choose certain values for the exponents:j50 or
21/2, k5(111/K) or 2(211/K), and m252l(a). The
result is

d2A

dz2
1S 1/222j

z
1

122m

z21
2

2k

z2n D dA

dz
1H F2mk2

3

2
k

12kj12mj2
m

2
2j1S 11

1

K D S 21
1

K D2lGz22kj

1
k

2
2

3

2 S 11
1

K D1nF22mj1
m

2
1j1l1

1

2 S 11
1

K D
3S 11

2

K D G J A

z~z21!~z2n!
50. ~7!
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We use power series to solve Eq.~7! and obtain a three-term
recursion relation, which we convert to a continued fracti
and analyze using methods described by Erdelyi@25#. The
requirement to obtain a convergent series to a function
approaches zero at largeuyu for the bound states determine
m as a function ofn(a), which then gives values ofv2(a)
for the bound-state eigenvalues. At this point we specia
to the caseK51, because numerical methods must be u
to obtain solutions of the continued fraction and beca
simulation results for nucleation rates are available for t
case@26#. The values ofv2(a) for the bound-state eigenva
ues are shown in Fig. 1. For a general value ofa, there are
the unstable mode withv0

2,0, the translation mode with
v1

250, and two other bound states withv2
2,v3

2.0. In addi-
tion, there is a continuous spectrum forv2.a @27#.

We now use these results to obtain the thermal nuclea
rate for the formation of stable phase droplets, adapting te
niques described by Langer@7# and by Büttiker and Land-
auer @28# but not restricted to the overdamped limit. Th
method is applicable for allK.0, but the final results we
show are forK51, since we use the eigenvalues shown
Fig. 1. The stochastic PDE in Eq.~1! is equivalent to a func-
tional Fokker-Planck equation~FPE! for the phase-space
probability distribution function~PDF! r($u,p%,t) ~a func-
tional of the fields!, wherep(x) is the momentum density
function,

]r

]t
52E

2`

`

dxH d

du~x! F dH

dp~x!
r1T

dr

dp~x!G
1

d

dp~x! F S 2
dH

du~x!
2g

dH

dp~x! D r

2gT
dr

dp~x!
2T

dr

du~x!G J . ~8!

Here H is the Hamiltonian, which is the kinetic energ
*dxp2/2 added to the potential energy shown in Eq.~3!.
Since Eq.~8! is a continuity equation in phase space, at ea
x there is a displacementJu,x($u,p%) and a momentum den
sity Jp,x($u,p%) component of the probability current, whic
can be read from the right-hand side.

FIG. 1. Squares of small oscillation frequencies for the discr
spectrum for the caseK51. The solid line is thev25a lower limit
to the continuum.
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We solve Eq.~8! subject to the same boundary conditio
used by previous authors@8#. Namely, we obtain a steady
state problem (]r/]t50) by imagining that probability is
fed back into the metastable well as it flows over the bar
into the stable well. This is accomplished by taking the P
to approach the equilibrium distribution exp(2H/T) at the
metastable region and to approach zero at the stable re
The restriction that the PDF approach the equilibrium dis
bution in the metastable well precludes applying our solut
to the underdamped case. However, since we solve the
on the whole phase space rather than contracting it to
configuration space, our solution is not restricted only to
overdamped limit. We writer5B($u,p%)exp(2H/T) and re-
write the FPE in terms ofB. Next we expand the fluctuation
of the displacement and momentum density fields away fr
the bounce solution in terms of the complete set of eig
functions obtained from Eq.~5!,

u~x,t !5ub~x!1(
n

zn~ t !fn~x!, ~9!

p~x,t !501(
n

jn~ t !fn~x!. ~10!

Near the bounce solution in phase space, the Hamilton
has the diagonalized small oscillation form

H@u,p#'Eb1
1

2 (
n

jn
21

1

2 (
n

vn
2zn

2 ~11!

in terms of the small oscillation frequencies obtained fro
the eigenvalues of Eq.~5!. We rewrite the divergence in Eq
~8! in terms of components and derivatives along the eig
function directionszn, jn, and evaluateH from Eq. ~11!. In
these coordinates the stationary FPE~8! is

(
n

~]zn
Ju,n1]jn

Jp,n!50, ~12!

and is an infinite-dimensional PDE forB. Next we utilize
Kramers’ method@3# to collapse this PDE to an ODE, b
assuming thatB is a function of only the single variable

y5(
n

~Rnzn1Snjn!. ~13!

To obtain a normalizableB, it comes out that onlyR0 andS0
can be nonzero. ThenB is proportional to an error function
normalized by the partition functionZms for the metastable
well in phase space@7#. Correspondingly, the only two non
zero components of the probability current areJu,0 andJp,0 .
We integrate the current over a surface passing through
saddle point, including an integration over the translat
mode, to get the total flux. Our result for the nucleation r
per unit length is
01610
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g

c0Auv0
2uv2v3

3FA11
4uv0

2u

g2
21G •AEb

T
e2Eb /T

3F )
n50

`

vms,n

)
n54

`

vn
G . ~14!

It is easy to show that the bounce energyEb is proportional
to c0. Therefore, for eacha andg the results for the nucle
ation rate fall on a single curve whenc0I /L is plotted versus
c0 /T.

In Eq. ~14!, the vms,n are the frequencies of small osci
lation about the metastable minimum of the local potent
these enter through the evaluation ofZms and are obtained
from a Klein-Gordon equation. The infinite products go ov
the continuum spectra for both the bounce and the metast
configurations. We evaluate this ratio by taking its logarith
then writingv in terms of the eigenvaluel introduced ear-
lier, and introducing the densities of states~DOS! g(l) and
gms(l) to convert the resulting sums into integrals, so tha

)
n50

`

vms,n

)
n54

`

vn

5a2e1/2*0
`dl[gms(l)2g(l)] ln(11l). ~15!

Finally, we evaluate the DOS for the bounce by a WK
technique similar to that used by Bu¨ttiker and Landauer@28#.

There are two restrictions on the parameters for t
theory to be valid. One requiresT!Eb or c0 /Eb!c0 /T so
that a critical droplet is distinguishable from thermal motio
Secondly, the boundary condition that the PDF describe t
mal equilibrium in the metastable well requires the damp
to be greater than a certain minimum magnitude. The res
tion is g.Auv0

2u @8#.

FIG. 2. Comparison of Eq.~14! ~asterisks! with rates obtained
from computer simulations in@26# ~diamonds! for K51 and a
50.214. The solid line is to guide the eye.
6-3
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A. J. GRAHAM AND W. C. KERR PHYSICAL REVIEW E65 016106
Simulations of the system described by Eqs.~1! and ~2!
with K51 have been carried out by Alford, Feldman, a
Gleiser@26#. They present results for five different parame
sets for the shape parametera and dampingg, but only one
of their g values satisfies the restriction given above.@The
values ofv0

2(a) were not known when@26# was written.#
The comparison between our values from Eq.~14! and the
simulation results for this one case is shown in Fig. 2. O
results are larger than the simulation values by factors ra
ing from about 3.2 to 4.8. We suggest two possible sour
for the discrepancy. One is our use of an approximate D
in Eq. ~15!. If the logarithm factor is omitted from the inte
gral in Eq.~15!, the resulting integral of the difference of th
DOS’s should have the value 4, according to Levinso
theorem. Ata50.214, using our approximate DOS the int
gral is 4.12, which overestimates Levinson’s theorem s
rule by a factor of 1.03. The overestimate could be larger
the integral in Eq.~15!, because of the logarithmic factor.
second source of differences between our theory and
simulation could be the same reasons that caused differe
between theory and simulation for the symmetricf4 system
for the energy dependence of the nucleation rate. These
ferences were resolved by performing long simulations
large systems@29#.
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Over the temperature range from the simulations show
Fig. 2, the exponential factor in Eq.~14! dominates the tem-
perature dependence. In a subsequent paper@19#, we will
present results for other parameter values and over la
ranges, including thef6 potential (K52).

In summary, we have presented a calculation of the nu
ation rate for critical droplets of a continuum on
dimensional elastic system moving in a double-well pote
tial. We have shown that the evaluation of the fluctuati
spectrum can be related to solving the Heun equation fo
class of potentials that includes thef4 andf6 functions used
for essentially all descriptions of first-order phase transitio
We then solved the functional phase-space Fokker-Pla
equation for our system by using the eigenfunctions and
genvalues from the Heun equation. Our results are exact
cept for the calculation of the DOS for the continuum spe
trum by the WKB method. We have proposed two possi
reasons for the differences between our theory and the s
lations.
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helpful suggestions.
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