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Solution of Kramers’ problem for a moderately to heavily damped elastic string
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We obtain the nucleation rate of critical droplets for an elastic string moving in a double-well potential and
subject to noise and damping forces. We obtain this rate for a class of potentials that includes both the
asymmetric¢* and the ¢® potentials. The frequencies of small oscillations about the critical droplet are
obtained from a Heun equation. We solve the Fokker-Planck equation for the phase-space probability density
by projecting onto the eigenfunction basis. We present a comparison with simulations for the case of the
asymmetric¢® potential.
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The calculation of the thermal decay rate for a system in &he damping and noise forces are from a heat bath at tem-
metastable state, separated by high-energy barriers froperatureT. ¢, is a characteristic velocityy>0 is a damping
neighboring lower-energy stable states, has a long higidry constant, and/(x,t) is a random force density with zero-
but remains active toddy2]. The decay process is described mean, Gaussian distribution, a@ddfunction correlations in
by the nucleation of droplets of the stable phase appearing iboth space and time proportional Toy. [We also use the
the surrounding background of the metastable phase. In deterministic equation of motio(DEOM), which is Eq.(1)
celebrated early pap¢8], Kramers calculated this rate for a with zero on the righi. We give the rate calculation for a
system described by a sindieaction coordinate; this quan- class of local potentials indexed by a paraméterO0,
tity was needed to understand thermal dissociation rates of
molecules. The same problem, generalized to higher- 1,1
dimensional phase spaces, has subsequently arisen in many Vi(u)= pau—gur Tt gu : @
different fields, including condensation of liquid from super-
saturated vapof4], cosmological phase transitiofs], and  This class includes both the asymmetit (K=1) and ¢°
protein folding[6]. Langer gave a general formulation of the (K=2) potentials; both of these have been extensively used,
theory [7] and major reviewq8,9] were written to com- e.g., in Landau-Ginzburg theories, to describe first-order
memorate the 50th anniversary of Kramers’ paper. phase transitions. The “shape parametaties in the inter-

A specific application and line of development of nucle-val 0<a<2/9 for all K. For these values &, V,(u) has a
ation theory has been to the motion of dislocations in crysimetastable minimum at=0 separated by a local maximum
tals. This work was initiated by Seeger and collabordib®  from a stable minimum at a valug,;,>0. At a=3, all the
and by Hirth and Lothg11] with important contributions minima ofV,(u) are degenerate. Previous calculations of the
from others, e.g.[12—14. The dislocation is modeled as a nucleation rate have only been fr=1 and have been fur-
one-dimensional continuum elastic string, which is underther restricted either to small asymmetrg~¢2) and/or to
tension, moving in an asymmetric local potential, and subjeclarge damping ¢— o). Our method is not subject to these
to damping and noise forces arising from contact with a heatestrictions.
bath. The dislocation moves through the crystal by nucle- The critical droplet extremizes the static energy and so is
ation of bound soliton-antisoliton pairs in its displacementa solution of the equation
field u(x,t).

In the present paper, we give a nearly exact calculation of o (=
this soliton-antisoliton nucleation rate, for moderate to large  su(x) f dx
damping, and for ealass of local potentials that includes (3)
those most used in theories of first-order phase transitions.

We do this by relating the problem to a solution of a Heunwhich is the static limit of the DEOM. In addition, the criti-
equation[15-18, and by using the eigenvalues and eigen-cal droplet satisfies boundary conditions of being nearly ev-
functions from the Heun equation to solve the appropriateerywhere equal to the uniform metastable solutiofx)
Fokker-Planck equatiofFPE). =0, but with a single localized fluctuation over the maxi-

Our equation of motion for the transverse displacemenmum and into the stable well &f,(u). The solution is
u(x,t) of a one-dimensional string is the stochastic partial K
differential equatioPDE) (subscripts denote partial deriva- a
tives, primes denote differentiation with respect to the argu- Ub(X)=[ \[E[tanf(x+)—tanHX)] , 4)
ment, all quantities are dimensionld49)]),

1 2, .2 2 ’
ECOUX"‘Vl(U) = — CoUyxt+ V1 (u)=0,

—0o0

where X.. = \a(x*x,)/(2¢,). This “bounce” [20] solution
is a soliton and an antisoliton separated byy(2)

Uit GGt VE(W) = = Ut (D). @ =co/(Va)In{[(v2/3)+ Val/[(V2/3)—Val}, which ap-
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proaches infinity asa— 2/9. The energy of the boundés, is
obtained by using Eq4) to evaluate the energy integral in
Eq. (3) [21]. There is a family of degenerate solutions of Eq.
(3) obtained by translating E¢4).

We demonstrate thai,(X) is a saddle point on the energy 3
surface over the phase space of solutions of the DEOM and
then calculate the nucleation rate from the spectrum of small
oscillations about it. To investigate the stability of the
bounce, we substitutel(x,t) =uy(x)+ ¢(x)e'“t into the

—0.2F . .

DEOM and linearize with respect t¢. We obtain a Schro 0.00 0.08 0.16 0.04
dinger equation, Shape Parameter a
¢"+[4N(a)—v(y)]p=0, (5) FIG. 1. Squares of small oscillation frequencies for the discrete

spectrum for the cadé=1. The solid line is thes?>=a lower limit

wherey=[K/a/(2c,)]x, the eigenvalue in terms of the fre- to the continuum.
quency is 4(a)=4(w?/a—1)/K?,
We use power series to solve K@) and obtain a three-term

recursion relation, which we convert to a continued fraction
v(y)=— 2(K+1)(K+2)(v+1)sechy and analyze using methods described by Erdg2]. The
K2(v—tanity) requirement to obtain a convergent series to a function that
approaches zero at largg for the bound states determines
N 4(K+1)(2K+1)vsechty (6 / @sa function ofi(a), which then gives values ab?(a)

for the bound-state eigenvalues. At this point we specialize
to the cas&K =1, because numerical methods must be used

and v(a)=[1+ V1—9a/21/[1— JV1—9a/2]. Depending on © obtain solutions of the continued fraction and because
a th;(“p)ote[ntial energy” i]n[Eq(G) has on]e or t\?vo attrgctive simulation results for nucleation rates are available for this

wells and is asymptotic to zero at larhd, so the spectrum case[26]. The values ofv?(a) for the bound-state eigenval-

has discrete bound states with negative eigenvalgey [or ~ U€S aré shown in Fig. 1. 2For a general valuapfhere are
w2<a] and a continuum of positive eigenvalles w?>a]. N unstable mode witloy<<0, the translation mode with

Since the DEOM is a nonlinear Klein-Gordon equation, the@i="0, and two other bound states wié, w3>0. In addi-

derivative of the bounce is a solution of E¢5) with  tion, there is a continuous spectrum fof>a [27]. _
w?(a)=0 [or \(a)=—1] (the “translation mode} [22]. We now use these results to obtain the thermal nucleation
The bounce has even parity, its derivative has odd parity, antte for the formation of stable phase droplets, adapting tech-
consequently the translation mode is not the ground state dfiques described by Langé7] and by Butiker and Land-
Eq. (5). There must be a solution witw?(a)<0, which ~ auer[28] but not restricted to the overdamped limit. The
implies that the bounce is unstaj3]. method is applicable for alk>0, but the final results we
To solve Eq.(5) we change the independent variable toShow are forK=1, since we use the eigenvalues shown in
z=tantf(y) (0<z<1 for —o<y<w) and obtain a Heun E|g. 1. The stochastic PDE in E€L) is equivalent to a func-
ODE with regular singular points at 0, &, and v(a). For  tional Fokker-Planck equatio=PB for the phase-space
0<a<2/9,%>w(a)>1, sov(a) is outside the physical do- Probability distribution functionPDP p({u,7},t) (a func-
main of z. We Change the dependent Variab|ed¢@)zzf(z tional of the flelds, where ’7T(X) is the momentum denSity
—1)#(z—v)*¢(z) and then find that to put the resulting function,
equation into “normal form” for the Heun equatidri7,18

K2(v—tantty)?

we must choose certain values for the exponefitsO or ap o 1) S6H op
—1/2, k=(1+1/K) or —(2+1/K), and 2= —\(a). The w0 | 5r0 P T T e
result is
1) oH 6H
d?A (12-2¢ 1-2u 2« | dA 3 a0 |\ T su0 Y er0 )P
—+ + — ——+i|2uk— 5k
dz z z—1 z—v|dz 2 S S
0T P P )
" 1 1 Vemx) su(x)]”
+2K§+2M§—E—§+ 1+R 2+R —\|z—2ké

Here H is the Hamiltonian, which is the kinetic energy

k 3 1 M 1 1 fdxm?/2 added to the potential energy shown in E8).
MR R A R AR i R) Since Eq.(8) is a continuity equation in phase space, at each
x there is a displacemedt, ,({u, 7}) and a momentum den-
| 1+ E) A _ 7) sity J, x({u, 7}) component of the probability current, which
K/||z(z—=1)(z—v) can be read from the right-hand side.
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We solve Eq(8) subject to the same boundary conditions | 1 y
used by previous authof8]. Namely, we obtain a steady- —= - )
state problem {p/dt=0) by imagining that probability is L 2(2m)3% ¢o | whlwpws
fed back into the metastable well as it flows over the barrier - >
into the stable well. This is accomplished by taking the PDF % /1+ 4| wg| B 1] ) \/EeEb/T
to approach the equilibrium distribution exp/T) at the V2 T
metastable region and to approach zero at the stable region.
The restriction that the PDF approach the equilibrium distri- [~
bution in the metastable well precludes applying our solution H ®Wmsn
to the underdamped case. However, since we solve the FPE X * . (14)
on the whole phase space rather than contracting it to just H
configuration space, our solution is not restricted only to the AL @n

overdamped limit. We write =B({u, 7w})exp(—H/T) and re-
write thg FPE in terms oB. Next we expanq the fluctuations |1 is easy to show that the bounce enefgyis proportional
of the displacement and momentum density fields away from, co. Therefore, for each and y the results for the nucle-

the b_ounce sqlut|on in terms of the complete set of eigenzyion rate fall on a single curve whegl/L is plotted versus
functions obtained from Ed5), ColT

In Eq. (14), the ws, are the frequencies of small oscil-
lation about the metastable minimum of the local potential;
these enter through the evaluation &, and are obtained
from a Klein-Gordon equation. The infinite products go over
the continuum spectra for both the bounce and the metastable

T(X ) =0+ 2 &(t) dn(X). (100  configurations. We evaluate this ratio by taking its logarithm,
n then writing w in terms of the eigenvalug introduced ear-
lier, and introducing the densities of stat&09) g(\) and
Near the bounce solution in phase space, the Hamiltonia@imd\) to convert the resulting sums into integrals, so that
has the diagonalized small oscillation form

u(x,t>=ub(x>+; Zn(D) (%), (9)

s
>

z

>S5

1 1 w
Huml~Ept 5 S 245 S w22 (@ a2l SO (15
n n

Wn

\EES S

in terms of the small oscillation frequencies obtained from

the eigenvalues of Ed5). We rewrite the divergence in EQ. Finally, we evaluate the DOS for the bounce by a WKB
(8) in terms of components and derivatives along the eigentechnique similar to that used by Bier and Landau€i28].
function directionsl,,, &,, and evaluatéd from Eq. (11). In There are two restrictions on the parameters for this
these coordinates the stationary FEBEis theory to be valid. One requiréB<E, or c,/Ep<Cy/T SO
that a critical droplet is distinguishable from thermal motion.
Secondly, the boundary condition that the PDF describe ther-
; (9¢,Junt ¢ In) =0, (12 mal equilibrium in the metastable well requires the damping
to be greater than a certain minimum magnitude. The restric-
and is an infinite-dimensional PDE fd@. Next we utilize tion is y= gl [8]
Kramers' method 3] to collapse this PDE to an ODE, by

assuming thaB is a function of only the single variable 10 45 ' ' 0=0.214
L y=0.327
- VIw,21=0.206
Y= (Rufnt Snéo). (13 Rt ez
S i
0° | ©
To obtain a normalizablB, it comes out that onlfR, and S, 107 5
can be nonzero. TheR is proportional to an error function i
normalized by the partition functio#,, for the metastable I
well in phase spacg7]. Correspondingly, the only two non- 1077 - . ' e
zero components of the probability current drg andJ, o. 160 180 200 /T 220 240 260

We integrate the current over a surface passing through the
saddle point, including an integration over the translation F|G. 2. Comparison of Eq14) (asterisk} with rates obtained
mode, to get the total flux. Our result for the nucleation ratefrom computer simulations i26] (diamond$ for K=1 and a
per unit length is =0.214. The solid line is to guide the eye.
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Simulations of the system described by E. and (2) Over the temperature range from the simulations shown in
with K=1 have been carried out by Alford, Feldman, andFig. 2, the exponential factor in E¢L4) dominates the tem-
Gleiser[26]. They present results for five different parameterperature dependence. In a subsequent pE@r we will
sets for the shape parameteand dampingy, but only one  present results for other parameter values and over larger
of their y values satisfies the restriction given abolEhe  ranges, including the® potential K=2).
values ofw§(a) were not known wheri26] was written] In summary, we have presented a calculation of the nucle-
The comparison between our values from Etf) and the  ation rate for critical droplets of a continuum one-
simulation results for this one case is shown in Fig. 2. Ourdimensional elastic system moving in a double-well poten-
results are larger than the simulation values by factors rangtal. We have shown that the evaluation of the fluctuation
ing from about 3.2 to 4.8. We suggest two possible sourcegpectrum can be related to solving the Heun equation for a
for the discrepancy. One is our use of an approximate DOG|ass of potentials that includes tg#é and 4 functions used
in Eq. (15). If the Iogarlth_m f_actor IS om|tted_from the inte- for essentially all descriptions of first-order phase transitions.
gral in Eq.(15), the resulting integral of the difference of the We then solved the functional phase-space Fokker-Planck

DOS’s should have the value 4, according to Levinson’ : . . . -
theorem. Ata=0.214, using our approximate DOS the inte- equation for our system by using the eigenfunctions and ei

: : . : ; envalues from the Heun equation. Our results are exact ex-
gral is 4.12, which overestimates Levinson’s theorem sun? q

rule by a factor of 1.03. The overestimate could be larger fofept ftc))r tt?]e c\:/\a}\:gglanotr;] 0:; tf\\/(\al Dr?S for the cogtlnuum sp%clz—
the integral in Eq(15), because of the logarithmic factor. A rum by the method. YWe have proposed two possibie

second source of differences between our theory and tHgasons for the differences between our theory and the simu-

simulation could be the same reasons that caused differencidions.

between theory and simulation for the symmetfit system

for the energy dependence of the nucleation rate. These dif-
ferences were resolved by performing long simulations on

large system$29].
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